
CAPITAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

Stabilization Of Underactuated

Mechanical System Using

Adaptive Sliding Mode Control

by

Qaiser Khan

A thesis submitted in partial fulfillment for the

degree of Master of Science

in the

Faculty of Engineering

Department of Electrical Engineering

2018

www.cust.edu.pk
www.cust.edu.pk
qaiser151006@gmail.com
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)


i

Copyright c© 2018 Qaiser Khan

All the rights of this document are held in reserve. If someone wants to copy in

a whole or in any part of this document in any form, he/she must need the prior

written permission of Qaiser Khan or designated representative.



ii

I am dedicating this thesis to my Parents, Family, Friends and Teachers for their

endless love, care and inspiration.



CAPITAL UNIVERSITY OF SCIENCE & TECHNOLOGY

ISLAMABAD

CERTIFICATE OF APPROVAL

Stabilization Of Underactuated Mechanical System Using

Adaptive Sliding Mode Control

by

Qaiser Khan

MEE-151006

THESIS EXAMINING COMMITTEE

S. No. Examiner Name Organization
(a) External Examiner Dr. Qudrat Khan CIIT, Islamabad
(b) Internal Examiner Dr. Aamer Iqbal Bhatti CUST, Islamabad
(c) Supervisor Dr. Fazal-Ur-Rehman CUST, Islamabad

Dr.Fazal-Ur-Rehman
Thesis Supervisor

May, 2018

Dr. Noor Muhammad Khan Dr. Imtiaz Ahmed Taj

Head Dean

Dept. of Electrical Engineering Faculty of Engineering

May, 2018 May, 2018



iv

Author’s Declaration

I,Qaiser Khan hereby state that my MS thesis titled “Stabilization of Under-

actuated Mechanical System Using Adaptive Sliding Mode Control ” is

my own work and has not been submitted previously by me for taking any degree

from Capital University of Science and Technology, Islamabad or anywhere else in

the country/abroad.

At any time if my statement is found to be incorrect even after my graduation,

the University has the right to withdraw my MS Degree.

(Qaiser Khan)

Registration No: MEE-151006



v

Plagiarism Undertaking

I solemnly declare that research work presented in this thesis titled “Stabilization of

Underactuated Mechanical System Using Adaptive Sliding Mode Control” is solely

my research work with no significant contribution from any other person. Small

contribution/help wherever taken has been dully acknowledged and that complete

thesis has been written by me.

I understand the zero tolerance policy of the HEC and Capital University of Science

and Technology towards plagiarism. Therefore, I as an author of the above titled

thesis declare that no portion of my thesis has been plagiarized and any material

used as reference is properly referred/cited.

I undertake that if I am found guilty of any formal plagiarism in the above titled

thesis even after award of MS Degree, the University reserves the right to with-

draw/revoke my MS degree and that HEC and the University have the right to

publish my name on the HEC/University website on which names of students are

placed who submitted plagiarized work.

(Qaiser Khan)

Registration No: MEE-151006



vi

Acknowledgements

First and foremost I would like to thank Allah almighty, who gave me the courage

and support to continue my graduate studies. The determination granted by Allah

helped me to tolerate the hard time to produce this thesis. I cannot forget the

ideal man of the world and most respectable personality for whom Allah created

the whole universe, Prophet Mohammed (Peace Be Upon Him).

I would like to thank to my supervisor, Dr. Fazal-ur-Rehman, with whom it has

been an honor to work. He allowed me tremendous freedom in choosing my area

of research and gave me outstanding guidance all along the way. His ”outside of

the box” thinking has taught me to do the same and for that I am grateful to him.

I am highly grateful to my loving parents and family who kept me motivated,

guided and focused throughout my Master. Their help in various regards con-

tributed in keeping my moral high. I extend my heartiest thanks to my colleagues

in control system research group, especially Mr. Ibrahim Shah, Mr. Sami ud Din

,Mr. Sarfaraz Ahmad , Mr. Waseem Abbasi and Mr. Nazim Siddique. They

always guided me whenever I was in need of that.I also thankful to my hostel

roomate Mr. Habibullah Somroo, Mr. Yasir Ahmed and Mr.Haris.



vii

Abstract

In the past decade, there has been increasing interest in underactuated mechanical

systems. These systems have many practical and diverse applications in modern

science and engineering. The broad application areas of underactuated systems

include robotics, industry, and aerospace systems. This thesis presents a simple

stabilizing control algorithm for a class of underactuated mechanical systems with

n degrees of freedom (n DOF). The methodology is based on adaptive sliding mode

control. Firstly, the system is transformed into a special structure through input

transformation, containing nominal part plus some unknown term. The unknown

term is computed adaptively. Later the transformed system is stabilized using

adaptive sliding mode control. The adapted laws are derived in such a way that the

time derivative of a Lyapunov function becomes strictly negative. The effectiveness

of the proposed method is applied to different underactuated systems with 2 DOF

and 3DOF: Inverted pendulum, TORA system, The Pendubot and Acrobot, Ball

and Beam system and double inverted pendulum. Computer simulation results

show the effectiveness of the proposed control algorithm on these systems.
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Chapter 1

Introduction

1.1 Introduction

In the past decade, there has been increasing interest in underactuated systems.

Underactuated mechanical systems are having lesser number of independent con-

trol actuators than the degrees of freedom. These systems have diverse applications

in modern science and engineering. The broad areas of applications regarding un-

deractuated mechanical systems include robotics and aerospace systems. Apart

from practical applications, these systems have been of great importance and in-

terest in research as a prototype framework for complex nonlinear systems. The

reasons for the underactuation include dynamics, of the system by nature like

aircraft, spacecraft, helicopters, and underwater vehicles, underactuation can be

introduced by design for the reduction of weight, this phenomenon can be im-

posed artificially to create complex low order nonlinear systems for gaining insight

in control of high order underactuated systems, such as inverted pendulum system,

ball on a beam system, and other systems of such kind.

Considering the applications of the class mentioned above, from the clan of robotics

UMSs, includes flexible-link joints, mobile robots, and many other kinds of manip-

ulators. The aforesaid class also incorporate aerial and underwater vehicles such

as surface vessels [1] , twin rotor system [2], etc.

1



Introduction 2

Control of UMS is the challenging and active field of research due to the benefits

of the underactuation property. There are several control methods available for

fully actuated mechanical systems (where a number of control inputs are equal to

degree of freedom) which includes, partial feedback linearization collocated [3] and

non-collocated [4], passivity [5], robust and adaptive control [6], sliding mode con-

trol [7] [8] fuzzy logic [9], and backstepping [10] . Aforesaid strategies are unable

to imply on the underactuated mechanical systems, due to non-holonomic nature

of such kind of systems (also, they are not fully linearizable) [11].

In this research work stabilization of underactuated mechanical systems is being

focused. In this regard, the technique of the adaptive sliding mode control is

considered. In this work our emphasis is to bring the system toward equilibrium

(considered at the origin) from an initial condition, to perform this task, an appro-

priate sliding surface is being considered followed by a Lyapunov function. Besides,

the presentation of stability analysis is very appealing. Five systems are considered

to prove the effectiveness of the proposed technique, which includes TORA system

[12] ball and beam balancer [13] , inverted pendulum [14], acrobot [3], pendubot

[15] and double inverted pendulum [16].The efficiency of the suggested algorithm

is verified through simulation studies using MATLAB.

1.2 Motivation

Importance of underactuated mechanical systems is already established in engi-

neering and military applications due to its applicability toward aerial and un-

derwater vehicles in the sense of weight reduction. Second and principal reason

for the flourishing of research in this domain is the provisional of backup con-

trol capability in the case of failure/damage of fully actuated system. The aspect

of stabilization of underactuated system will always appear likely or unlikely in

the scenarios mentioned above, which is discussed in this thesis and becomes the

notion for this work.
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1.3 Application of Research

If ones look around within a small circle, we live in a world of machines/equipment.

These equipment/ machines can be underactuated or fully actuated (considering

with the perspective of proposed work). If fully actuated system left working by

any means, we have no choice to deal it as underactuated systems, in this regard

world is quite rich with the application perspective of the underactuated system

starting from our home. If we talk on a larger scale, every industry is equipped

with the machinery based on the underactuation phenomenon in some capacity.

Moreover, its application also includes spacecraft and marine vehicles.

1.4 Thesis Organization

The outline of this thesis is as follows.

Chapter 2 -Literature Review:

This chapter will give us a review of the literature published about the underac-

tuated mechanical systems. This literature establishes proposed work along with

selected examples.

Chapter 3 -Proposed Control Algorithm :

This chapter describes the problem and controllability issue regarding underactu-

ated mechanical systems. It contains the proposed algorithm for the underactuated

mechanical system

Chapter 4 -Application To Proposed Control Algorithm:

The efficiency of the suggested control strategy is applied to different underac-

tuated mechanical systems such as TORA system, ball and beam balancer, Pen-

dubot, and Acrobot.

Chapter 5 -Conclusion and Future Work:

This chapter covers the judgment and upcoming work.



Chapter 2

Literature Review

This chapter presents the literature review of underactuated mechanical systems

(UMS) controlled via sliding mode. This study will help to decide a control strat-

egy for UMS. The proposed control strategy will ensure that the UMS will remain

stable within a specific bound of disturbances.

2.1 Underactuated Mechanical Systems

A system having few independent control actuators than its degree of freedom is

said to be UMS. It is an active research field due to broad applications in different

disciplines.

Examples of such systems include a mobile robot, helicopter, underactuated ma-

nipulator, space robot, spacecraft, surface vessel and an underwater vehicle. Fully

actuated systems don’t have such challenges as in UMS systems. In the literature,

diverse control techniques have been presented, including backstepping as investi-

gated in [17],energy and passivity-built regulator as in [18], hybrid and switched

control in [19], and intelligent and fuzzy control as in [20]. It is hard to pinpoint

the general concept that permits to conduct a routine investigation for all UMSs

because of the variety and extensive research on this topic. Therefore, these sys-

tems are dealt on a case to case basis most of the time.

4
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Spong made the first generalization for underactuated systems in [21], where it

was proved that UMSs could be partly linearized by feedback (locally). According

to actuation variable, he proposed changes in the input that convert nonlinear

models into partly linear ones. Nevertheless, the new control comes in both con-

verted subsystems. Seto gave the first classification for UMSs in [22]. He showed

the way for generalized forces to be transmitted through degrees of freedom.

Later on, Olfati-Saber [4] gave a second classification for UMS based on some

system structural properties like integrable normalized generalized momentums,

kinetic symmetry, actuation mode, and interacting inputs. Some of the most rec-

ognized works with respect to energy point of view include Astrom [23], Bloch

[24], and Spong [25]. In the same way, passivity-built procedures consist in swing-

ing or routing the previous systems, but to bring them to the homoclinic path.

Jankovic [26] and Sepulchre [27] also proposed passivity-based control and intro-

duced the systems transformation in a cascaded form. Kolesnichenko [28] also

posed such work for Translational Oscillator with Rotational Actuator (TORA)

and pendubot. Hauser [13] posed approximate linearization methodology for the

ball and beam balancer. Other samples that are largely studied in the name of

UMS are Inertia wheel pendulums and cranes. It has been investigated widely

because of their extensive use in industry, in [29] and in [30] respectively.

2.2 Examples Underactuated Mechanical Systems

The UMS include Translational Oscillator with Rotational Actuator (TORA) sys-

tem [31], the beam and ball system [13], the Acrobot [3], the Pendubot [15], the

cart-pole system [32], the crane system [33], and the double inverted pendulum

[34]. This system will be introduced briefly in touch coming study.

2.2.1 Acrobot and Pendubot

Acrobot [3] and Pendubot [15] are two-link manipulators with a single actuator

at elbow and shoulder, respectively. Both manipulators have same equations of



Literature Review 6

motion and are graphically alike. The stabilization of the two-link manipulator

to its upright equilibrium point (q1 = π
2
and q2 = 0) from any initial condition is

their control task.

Energy-based control is one of the famous control approach used for stabilization

[15]. Lai in [35] gave a complete unified control technique for its stabilization.

An impulse momentum approach provided a new idea to swing up control by

Albahkali in [36] and Jafari in [37].

2.2.2 Cart-Pole System

This system is a benchmark underactuated system. It is used as a testbed for

nonlinear control study. The control objective is to swing the pendulum from its

steady downward equilibrium state. (q1 = 0 and q2 = π) to vertical unbalanced

equilibrium point (q2 = 0), while retaining the cart at its original point (q1 = 0).

Considerable work has been done in the past via fuzzy control (FC) and energy

based strategies for the under consideration cart-pole system in [38].

2.2.3 Ball and Beam System

The ball and beam system [13] consists of a beam able to move up and downward

via a motor connected at one end (whereas the other end of the beam is kept

fixed). As this beam is made of metal and iron ball is allowed to move freely on

it. The control task is to stabilize the ball on the desired position on the beam,

starting from an initial condition on the beam. The Lyapunov-based method [39]

control works on this system.

2.2.4 Translational Oscillator with Rotational Actuator Sys-

tem (TORA)

The TORA system is a non-linear benchmark example for different control tech-

niques. The system contains an oscillating translational stage and an eccentric
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revolving pendulum. To make sure the horizontal displacement q1 → 0 in the

presence of any exterior disturbance is the control task of TORA. [40].

Since our main focus will be on the SMC, therefore, in the next section SMC is

introduced briefly.

2.3 Sliding Mode Control

It is a robust non-linear control design methodology with inherent robustness

properties against disturbances, perturbations, and parametric variations. Sliding

mode control (SMC) is recognized as a discontinuous type of control procedure

because of its controller’s nature. SMC structure is comparatively easier to design

and use. Apart from being a control systems method, it is also employed for the

disturbance estimation and rejection.

SMC [41] is a variable structure control systems design procedure. The very

fundamental notion of sliding mode control is described in [42]. SMC occurs in

two phases namely, sliding phase and reaching phase briefly discussed in [43].

Upcoming subsection explains about the sliding surface design for SMC.

2.3.1 Sliding Surface

For the employment of SMC, at first step, switching surface design is required.

The switching surface can also be named as a sliding surface. When the sliding

surface is defined, then the above mentioned two phases come in to place in specific

order. Reaching phase is attained first, and it is responsible for the attraction of

system states from an initial condition on the switching surface. When reaching

phased is achieved, and the system lies on the sliding surface, then sliding phase

into place, and the system’s stats slide towards the origin (equilibrium point) using

a discontinuous control action (which also ensures robustness). Fig. 2.1 shows the

reaching phase (RP), sliding mode (SM) and sliding surface (SS) in a pictorial

way.
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Figure 2.1: The Sliding Phase, Reaching Phase and Sliding Surface

2.3.2 Chattering Phenomenon

Due to the discontinuous control, chattering will generate in the system, which

is considered to be dangerous for the system’s mechanical and electromechan-

ical parts. Such chattering has much adverse effect in real-world applications.

This phenomenon may lead to considerable unwanted oscillations that degrade

the performance of the system. To avoid chattering effect, various solutions to

this problem have been proposed. A new design scheme based on the estima-

tion of sliding variable was presented [44]. The method based on the describing

function approach was developed for a chattering analysis of the structure in the

existence of the un-modeled dynamics. Another way to reduce chattering effect is

using High Order Sliding Mode (HOSM) control techniques.
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2.4 Summary

In this chapter literature review of underactuated mechanical systems (UMS) is

presented. In a literature review, different techniques were seen that was previously

used to stabilize UMSs. Different UMSs were discussed with the control task. The

sliding mode control is also discussed.



Chapter 3

Proposed Control Algorithm

This chapter presents a simple stabilizing control algorithm for a class of UMSs

with n degrees of freedom (n DOF). The control algorithm is based on adaptive

sliding mode control technique. The general approach to the control problem

makes it simple and easy to apply to the whole class of systems. Once it is known

that a particular system belongs to the considered class and can be written in the

general form, the designed control algorithm can be applied to it.

3.1 Dynamical model of under-actuated mechan-

ical systems

(A) - General n degrees of freedom(n DOF)under-actuated mechanical

systems: The general dynamical equations of motion for a simple mechanical

control system with n degrees of freedom (n DOF) are given by Euler-Lagrange

equation as follows [4]:
d

dt

∂L

∂q̇
− ∂L

∂q
= F (q)u (3.1)

In Eq.(3.1), q ∈ Rn is the generalized configuration vector, u ∈ Rm is the control

input vector and F (q) = [f1(q), . . . fm(q)]T is the matrix of external forces.

where L is the Lagrangian function which is defined by, the difference of kinetic

10
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energy ”K” and potential energy ”V”. Its mathematical expression appears as

follows.

L(q, q̇) = K − V =
1

2
q̇TM(q)q̇ − V (q) (3.2)

In vector form, the dynamics (3.1) can be written as:

M(q)q̈ + C(q, q̇)q +G(q) = F (q)u (3.3)

For the general case F (q) = [F1(q), F2(q)]
T and partitioning q = [q1, q2]

T according

to F (q), where q1 ∈ Rn−m and q2 ∈ Rm, dynamics (3.3) can be written as [4]:

m11q̈1 +m12q̈2 + c1 + g1 = F1(q)u

m21q̈1 +m22q̈2 + c2 + g2 = F2(q)u
(3.4)

M(q)=

m11 m12

m21 m22

 is the symmetrical positive definite inertia matrix, c1(q, q̇) ∈

R(n−m) and c2(q, q̇) ∈ Rm are the centrifugal and coriolis terms, g1(q) ∈ Rn−m and

g2(q) ∈ Rm are the gravitational terms, and u ∈ Rm is the vector of control inputs

produced by m actuators. For F1(q) = 0 and F2(q) = 1, one may have

m11q̈1 +m12q̈2 + c1 + g1 = 0

m21q̈1 +m22q̈2 + c2 + g2 = u
(3.5)

Where as for F1(q) = 1 and F2(q) = 0, one may have

m11q̈1 +m12q̈2 + c1 + g1 = u

m21q̈1 +m22q̈2 + c2 + g2 = 0
(3.6)

In this thesis we are considering both the cases when F1(q) = 0 and F2(q) = 1,

F1(q) = 1 and F2(q) = 0. Solving the first system in (3.5) for q̈1 and q̈2, and then

substituting the result in the second equation, (3.5) can be written as:

m̄11q̈1 + c̄1 + ḡ1 = u (3.7a)

m̄22q̈2 + c̄2 + ḡ2 = u (3.7b)
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where

m̄11(q) = m21 −m22m
−1
12m11

c̄1(q, q̇) = c2 −m22m
−1
12 c1

ḡ1(q) = g2 −m22m
−1
12 g1

m̄22(q) = m22 −m21m
−1
11m12

c̄2(q, q̇) = c2 −m21m
−1
11 c1

ḡ2(q) = g2 −m21m
−1
11 g1

(3.8)

Since q1 ∈ Rn−m and q2 ∈ Rm, dynamics (3.7) is a set of two second order systems

in state variables. The state space representation of (3.7) can be written as [28]

ẋ1 = x2

ẋ2 = f1 + b1(x)u

ẋ3 = x4

ẋ4 = f1 + b2(x)u

...

ẋ2n−1 = x2

ẋ2n = fn + bn(x)u

(3.9)

Here x = [x1, x2 . . . , x2n−1, x2n]T is the state vector fi(x) and bi(x), i = 1, 2, ....., n

are the nonlinear functions of the states and u is the single control input. For

n = 2, the equation (3.9) can be written as:

ẋ1 = x2

ẋ2 = f1 + b1(x)u

ẋ3 = x4

ẋ4 = f1 + b2(x)u

(3.10)
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The state space models of the Pendubot and single inverted pendulum systems

are represented by (3.10). For n = 3 the equation (3.9) gives:

ẋ1 = x2

ẋ2 = f1 + b1(x)u

ẋ3 = x4

ẋ4 = f2 + b2(x)u

ẋ5 = x6

ẋ6 = f3 + b3(x)u

(3.11)

The state space model of the parallel double inverted pendulum system is repre-

sented by (3.11). The problem formulation is almost complete. In the next section

the control design will be presented.

3.2 The control problem

The control problem is to find U such that all the states of the system converge

to zero. For set point regulation of 2DOF underactuated mechanical systems we

take xdes = [0, 0, 0, 0]T which can be achieved by an appropriate translation of the

frame of reference.

3.3 The proposed algorithm for general case

In this section we aim to present the control strategy for a general case. This wil

be done in a series of steps.

Step 1:
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The system (3.9) written into the following form.

ẍ1 = f1 + b1(x)u

ẍ3 = f2 + b2(x)u

...

ẍ2n−1 = fn + bn(x)u

(3.12)

By defying Y = [x1 x3 . . . x2n−1]
T , Ẏ = [ẋ1 ẋ3 . . . ẋ2n−1]

T , Ÿ = [ẍ1 ẍ3 . . . ẍ2n−1]
T

F (x) = [f1(x) f2(x) . . . fn(x)]T ,B(x) = [b1(x) b2(x) . . . bn(x)]T , the system (3.12)

may be written as:

Ÿ = F (x) +B(x)u (3.13)

Step 2:

By adding and subtracting v = [0 u2 . . . un]T in (3.13) on may get

Ÿ = F (x) +G(x)w − v (3.14)

where, G(x)=



b1 0 0 . . . 0

b2 1 0 . . . 0

b3 0 1 . . . 0
...

...
... . . .

bn 0 0 0 1


such that G−1(x) exist and , w =



u

u2

u3
...

un


.

Notethat v = [0 u2 u3 . . . un]T is unknown inputs vector and can be computed

adaptively. Let v̂ be the estimate of v and let ṽ = v− v̂ be the error of estimation.

Then system (3.14) becomes

Ÿ = F (x) +G(x)w − ṽ − v̂ (3.15)
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Step 3:

Choose a sliding surface: S =


s1

s2
...

sn

 =


x1 + x2

x3 + x4
...

xn−1 + xn

=Y + Ẏ

Then Ṡ = Ẏ + Ÿ = Ẏ + F (x) +G(x)w − ṽ − v̂

By choosing w = −{G−1(x)Ẏ + F (x)− v̂ −KS −Ksign(S)}

K = diag{k1, k2, ...., kn}, ki, > 0, i = 1, 2, ...., n, one has

Ṡ = −KS −Ksign(S)− ṽ (3.16)

Step 4:

Choose a Lyapunov function V = 1
2
STS + 1

2
ṽTΓ−1ṽ, where Γ is n × n diagonal

positive definite matrix. Then

V̇ = ST Ṡ + ṽTΓ−1 ˙̃v = ST{−KS −Ksign(S)− ṽ}+ṽTΓ−1 ˙̃v

V̇ = −KSTS −K|S|+ ṽT{Γ−1 ˙̃v − S}

By using

˙̃v = ΓS

˙̂v = −ΓS

We have

V̇ = ST Ṡ + ṽT ˙̃v = ST{−KS −Ksign(S)− ṽ}+ṽTΓ−1 ˙̃v

V̇ = ST{−KS −Ksign(S)− ṽ}+ ṽT{Γ−1 ˙̃v − S}

V̇ = −KSTS −K|S| ≤ 0 (3.17)

Eq.(3.17) confirms that S → 0 in finite time. Since S =


s1

s2
...

sn

 =


x1 + x2

x3 + x4
...

xn−1 + xn

→ 0

and S is Hurwitz

therefore xi → 0, for i = 1, ...n
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3.3.1 Proposed algorithm for the case when n = 2;

For n = 2 the system (3.9) becomes

ẋ1 = x2

ẋ2 = f1 + b1(x)u

ẋ3 = x4

ẋ4 = f1 + b2(x)u

(3.18)

Step 1:

Write the system (3.17) as:

ẍ1 = f1 + b1(x)u

ẍ3 = f2 + b2(x)u
(3.19)

By defying Y = [x1 x3]
T , Ẏ = [ẋ1 ẋ3 ]T , Ÿ = [ẍ1 ẍ3 ]T

F (x) = [f1(x) f2(x) ]T ,B(x) = [b1(x) b2(x) ]T , the system (3.18) can be written as:

Ÿ = F (x) +B(x)u (3.20)

Step 2:

By adding and subtracting v = [0 u2]
T in (3.19) we have

Ÿ = F (x) +G(x)w − v (3.21)

Where, G(x)=

b1 0

b2 1

 , w =

 u
u2

 and G−1(x) exist.

Assume v = [0 u2]
T is unknown input vector.Then system (3.19) becomes:

Ÿ = F (x) +G(x)w − ṽ − v̂ (3.22)

Choose a sliding surface: S =

s1
s2

 =

x1 + x2

x3 + x4

=Y + Ẏ



Proposed Control Algorithm 17

Then Ṡ = Ẏ + Ÿ = Ẏ + F (x) +G(x)w − ṽ − v̂

By choosing w = −{G−1(x)Ẏ + F (x)− v̂ −KS −Ksign(S)} where,

K = diag{k1, k2}, k1k2, > 0, one has

Ṡ = −KS −Ksign(S)− ṽ (3.23)

Step 4:

Choose a Lyapunov function V = 1
2
STS + 1

2
ṽTΓ−1ṽ, where Γ is 2 × 2 diagonal

positive matrix. Then

V̇ = ST Ṡ + ṽT ˙̃v = ST{−KS −Ksign(S)− ṽ}+ṽTΓ−1 ˙̃v

V̇ = −KSTS −K|S|+ ṽT{Γ−1 ˙̃v − S}

By using

˙̃v = ΓS

˙̂v = −ΓS

We have

V̇ = ST Ṡ+ṽT ˙̃v = ST{−KS−Ksign(S)−ṽ}+ṽTΓ−1 ˙̃v V̇ = ST{−KS−Ksign(S)−

ṽ}+ ṽT{Γ−1 ˙̃v − S}

V̇ = −KSTS −K|S| ≤ 0

From this we conclude that S → 0. Since S =

s1
s2

 =

x1 + x2

x3 + x4

 → 0 and S is

Hurwitz therefore xi → 0, for i = 1, ...4
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3.3.2 Proposed algorithm for the case when n = 3

For n = 3 the system (3.9) becomes as:

ẋ1 = x2

ẋ2 = f1 + b1(x)u

ẋ3 = x4

ẋ4 = f2 + b2(x)u

ẋ5 = x6

ẋ6 = f3 + b3(x)u

(3.24)

Write the system (3.23) as:

ẍ1 = f1 + b1(x)u

ẍ3 = f2 + b2(x)u

ẍ5 = f3 + b3(x)u

(3.25)

By defying Y = [x1 x3 . . . x5]
T , Ẏ = [ẋ1 ẋ3 . . . ẋ5]

T , Ÿ = [ẍ1 ẍ3 . . . ẍ5]
T

F (x) = [f1(x) f2(x) . . . f3(x)]T ,B(x) = [b1(x) b2(x) . . . b3(x)]T , the system (3.24)

can be written as:

Ÿ = F (x) +B(x)u (3.26)

Step 2:

By adding and subtracting v = [0 u2 . . . u3]
T in (3.24) we have

Ÿ = F (x) +G(x)w − v (3.27)

Where, G(x)=


b1 0 0

b2 1 0

b3 0 1

 , w =


u

u2

u3

 and G−1(x) exist.

v = [0 u2 u3 ]T is unknown input vector. Then system (3.26) becomes:

Ÿ = F (x) +G(x)w − ṽ − v̂ (3.28)
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Step 3:

Choose a Sliding surface: S =


s1

s2

s3

 =


x1 + x2

x3 + x4

x5 + x6

=Y + Ẏ

Then Ṡ = Ẏ + Ÿ = Ẏ + F (x) +G(x)w − ṽ − v̂

By choosing w = −{G−1(x)Ẏ + F (x)− v̂ −KS −Ksign(S)} where,

K = diag{k1, k2, k3}, k1k2k3, > 0, we have

Ṡ = −KS −Ksign(S)− ṽ (3.29)

Step 4:

Choose a Lyapunov function V = 1
2
STS + 1

2
ṽTΓ−1ṽ, where Γ is 3 × 3 diagonal

positive matrix. Then

V̇ = ST Ṡ + ṽT ˙̃v = ST{−KS −Ksign(S)− ṽ}+ṽTΓ−1 ˙̃v

V̇ = −KSTS −K|S|+ ṽT{Γ−1 ˙̃v − S}

By using

˙̃v = ΓS

˙̂v = −ΓS

We have

V̇ = ST Ṡ + ṽT ˙̃v = ST{−KS −Ksign(S)− ṽ}+ṽTΓ−1 ˙̃v

V̇ = ST{−KS −Ksign(S)− ṽ}+ ṽT{Γ−1 ˙̃v − S}

V̇ = −KSTS −K|S| ≤ 0

From this we conclude that S → 0. Since S =


s1

s2

s3

 =


x1 + x2

x3 + x4

x5 + x6

 → 0 and S is

Hurwitz

therefore xi → 0, for i = 1, ...6
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3.4 Summary

In this chapter dynamical model of an underactuated mechanical system is pre-

sented. Different mathematical terms were discussed related to UMSs. The pro-

posed algorithm is explained for a general case. Also, the proposed method is

explained for the 2DOF and 3DOF UMSs. In the next chapter, the proposed

algorithm will be applied on different UMSs.



Chapter 4

Applications Of Proposed

Algorithm

In this chapter, different underactuated mechanical systems are considered to ver-

ify the proposed control strategy. These systems are supposed to have 2 DOF and

3 DOF, i.e., Inverted pendulum, TORA system, Ball, and Beam system, The Pen-

dubot, Acrobat, and Double inverted pendulum. Computer simulation is carried

out to show the validity of the proposed control algorithm.

4.1 The Inverted Pendulum System with a non-

linear spring

The proposed control scheme is now used to stabilize an inverted pendulum with a

nonlinear spring as considered in [14]. The system consists of two masses m1 and

m2. The mass m1 on a horizontal surface and an inverted pendulum m2 supported

by a massless rod shown in fig. 4.1. At one end the mass is connected to the wall,

and at the other end, it is connected to the inverted pendulum. The displacement

of mass m1 is x whereas from the vertical the angle of the pendulum is θ. Both

21
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Figure 4.1: The inverted pendulum with a nonlinear spring

linear and nonlinear springs are unstretched at x = 0 and θ = 0. The control force

acts on mass m1 whereas m2 is passively controlled.

The dynamic of the system given in [14] appears as follows:

θ̈ = g
l

sin θ + k
s
(x− sin θ)3 cos θ

ẍ = k
m1
− ks

m1
(x− l sin θ)3 u

m1

which can be transformed into the following system [14]

ẋ1 = x2

ẋ2 =
g

l
sinx1 + x33

ẋ3 = x4

ẋ4 = u

(4.1)

where x1, x2, x3 and x4 are the state variables defined as; x1 = x, x2 = ẋ, x3 = θ,

and x4 = θ̇, u is the control input, g is the acceleration due gravity, and l is the

pendulum’s length.By choosing w = −{G−1(x)Ẏ + F (x)− v̂ −KS −Ksign(S)}

System (4.1) can also be written as:

ẋ1 = x2

ẋ2 = f1(x)

ẋ3 = x4

ẋ4 = u

(4.2)
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where f1(x) = x33 + g
l

sinx1 Apply the above algorithm on this system. In simula-

tions we used g = 9.8 and l = 1

For two different initial conditions fig. 4.2 and fig. 4.3 show the simulation results.

4.1.1 Results and Discussion

The simulation of the inverted pendulum with a nonlinear spring is done for the

different initial condition. The time history of angle θ(t), angular velocity θ̇, the

displacement x(t) and velocity ẋ(t) of the controlled system are shown in fig 4.2(a)

and fig 4.3(a). For different initial condition both the figure show that the system

asymptotically approach to zero. From fig 4.2(b) and fig 4.3(b) it can be seen that

the control force exponentially decay as time increases. So the closed loop system

is exponentially stable.

shows the simulation result When the disturbance is added to the equation (4.2),

it is seen clearly that all the states of system convergence to zero as shown in

fig. 4.4.
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(a)

(b)

(c)

Figure 4.2: Closed loop response of the Inverted Pendulum system with a
nonlinear spring ,(a) Time response of system states corresponding to initial
condition (x1(0), ..., x4(0)) = (3, 0, π4 , 0) (b) Time response of u2, û2 and control

effort u = u1 (c)Time history of the sliding surfaces s1 and s2
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(a)

(b)

(c)

Figure 4.3: Closed loop response of the Inverted Pendulum system with a
nonlinear spring ,(a) Time response of system states corresponding to initial
condition (x1(0), ..., x4(0)) = (1,−2,−3, 2), (b) Time response of u2, û2 and

control effort u = u1, (c)Time history of the sliding surfaces s1 and s2
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(a)

(b)

(c)

Figure 4.4: Closed loop response of the Inverted Pendulum system with a
nonlinear spring ,(a) Time response of system states corresponding to initial
condition (x1(0), ..., x4(0)) = (3, 0, π4 , 0) (b) Time response of u2, û2 and control

effort u = u1 (c)Time history of the sliding surfaces s1 and s2
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4.2 Translational Oscillator with Rotational Ac-

tuator (TORA) System

The system as shown in the following figure 4.5 has been considered as a bench-

mark system to estimate the performance of numerous nonlinear systems [26]. To

make sure the horizontal displacement q1 → 0 in the occurrence of any exterior

disturbance is the control task of TORA. The dynamic of the TORA system as

given in [45] is:

Figure 4.5: TORA System

q̇1 = p1

ṗ1 =
−q1 + εp22 sin q2

1− ε2 cos2 q2
− ε cos q2

1− ε2 cos2 q2
+ v

q̇2 = p2

ṗ2 =
ε cos q2(q1 − εp22sinq2)

1− ε2 cos2 q2
− 1

1− ε2 cos2 q2
+ v

(4.3)

where q1 be the normalized displacement of the platform from the equilibrium

position, q̇1 = p1, q2 be the angle of the rotor and q̇2 = p2, v is the control input

and ε a constant parameter. Using the following coordinate transformation as
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given in [45]:

x1 = q1 + ε sin q2

x2 = p1 + εp2 cos q2

x3 = q2

x4 = p2

(4.4)

The TORA

ẋ1 = x2

ẋ2 = −x1 + ε sinx3

ẋ3 = x4

ẋ4 = u

(4.5)

The System (4.5) can be further modified as:

ẋ1 = x2

ẋ2 = f1(x)

ẋ3 = x4

ẋ4 = u

(4.6)

where f1(x) = −x1+ε sinx3. By choosing w = −{G−1(x)Ẏ + F (x)− v̂ −KS −Ksign(S)}

Now apply the proposed algorithm on this system. In simulation we used ε = 2

and f1(x) = −x1 + ε sinx3. Simulation results are shown in fig. 4.6 and 4.7 for two

different initial conditions.

4.2.1 Results and Discussion

The simulation of the TORA system is done for the different initial condition.

The time history of angle q2(t), angular velocity q̇2(t), the displacement q1(t)

and velocity q̇1(t) of the controlled system are shown in fig 4.5(a) and fig 4.6(a).

For different initial condition both the figure show that the system asymptotically

approach to zero. From fig 4.6(b) and fig 4.7(b) it can be seen that the control force

exponentially decay as time increases. So the closed loop system is exponentially

stable. Also fig 4.6(c) and fig 4.7(c) shows that the sliding surfaces s1 and s2 are
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asymptotically stable.

Fig. 4.8 shows the simulation result when the disturbance is added to the equation

(4.6). It is seen clearly that all the states of system convergence to zero.



Applications Of Proposed Algorithm 30

(a)

(b)

(c)

Figure 4.6: Closed loop response of the TORA system ,(a) Time response of
system’s states corresponding to initial condition (x1(0), ..., x4(0)) = (2, 0, π4 , 0),
(b) Time response of u2, û2 and control effort u = u1, (c) Time history of the

sliding surfaces s1 and s2
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(a)

(b)

(c)

Figure 4.7: Closed loop response of the TORA System , (a) Time re-
sponse of system’s states corresponding to initial condition (x1(0), ..., x4(0)) =
(2,−3, 3,−1), (b) Time response of u2, û2 and control effort u = u1, (c) Time

history of the sliding surfaces s1 and s2
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(a)

(b)

(c)

Figure 4.8: Closed loop response of the Inverted Pendulum system with a
nonlinear spring ,(a) Time response of system states corresponding to initial
condition (x1(0), ..., x4(0)) = (3, 0, π4 , 0) (b) Time response of u2, û2 and control

effort u = u1 (c)Time history of the sliding surfaces s1 and s2
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4.3 The Ball and Beam System

The system is shown in the following fig 4.9. The mathematical model describing

the ball and beam system as given in [8]. The control task is to stabalize the ball

on the desired position on the beam, starting from any initial condition on the

beam.

Figure 4.9: Ball and Beam System

(mq22 + k1)q̈1 + (2mq2q̇2) + (mgq2 +
1

2
LMg) cos q1 = x2

k4q̈2 − q2q̇1 + g sin q1 = 0

(4.7)

By defining the state variables as: x1 = q2, x2 = q̇2, x3 = q1, x4 = q̇1, the system

as given in (4.7) can be written as:

ẋ1 = x2

ẋ2 =
1

k 4
(x1x

2
4 − g sinx3)

ẋ3 = x4

ẋ4 =
1

mx21 + k1
[(2mx1x2 + k2)x4 −

1

k 4
(mgx1 +

1

2
Mg) cosx3]

(4.8)
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By choosing u = ū(mx21 + k1)[(2mx1x2 + k2)x4 + 1
k 4

(mgx1 + 1
2
Mg) cosx3], where

ū is the new input, then system (4.8) can be written as:

ẋ1 = x2

ẋ2 =
1

k 4
(x1x

2
4 − g sinx3)

ẋ3 = x4

ẋ4 = ū

(4.9)

The system (4.9) can be written as:

ẋ1 = x2

ẋ2 = f1(x)

ẋ3 = x4

ẋ4 = v

(4.10)

The proposed algorithm is applied on this system. In simulation it is used k4 = 1

and g = 9.8, f1(x) = 1
k 4

(x1x
2
4 − g sinx3) Simulation results are shown in fig 4.10

and 4.11 for two different initial conditions.

4.3.1 Results and Discussion

he primary objective was to steer the system to the desired state starting from an

initial state. The proposed control law is tested on the Ball and Beam System.

The objective has been achieved for two different initial conditions as shown by

the simulation results.
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(a)

(b)

(c)

Figure 4.10: Closed loop response of the Ball and Beam System ,(a) Time
response of system’s states corresponding to initial condition (x1(0), ..., x4(0)) =
(2,−2, π5 ,−

π
6 ), (b) Time response of u2, û2 and control effort u = u1, (c)Time

history of the sliding surfaces s1 and s2
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(a)

(b)

(c)

Figure 4.11: Closed loop response of the Ball and Beam System , (a) Time
response of system’s states corresponding to initial condition (x1(0), ..., x4(0)) =
(2, 0, π4 , 0), (b) Time response of u2, û2 and control effort u = u1, (c) Time

history of the sliding surfaces s1 and s2



Applications Of Proposed Algorithm 37

4.4 The Acrobot and The Pendubot System

The Acrobot :

The Acrobot is a two link manipulator with a single actuator at the elbow as

shown in fig. 4.12(a).

Figure 4.12: The Acrobot and the Pendubot

For the dynamical model of the Acrobot, F (q) = [F1(q), F2(q)]
T = [0, 1]T in (3.4)

and the equations of motion are given by (3.5) as:

m11q̈1 +m12q̈2 + c1 + g1 = 0

m21q̈1 +m22q̈2 + c2 + g2 = u
(4.11)

with m11,m12,m21,m22, c1, g1, c2,and g2 as follows:

m11(q2) = I1 + I2 +m1l
2
1 +m2(L

2+
1 l22) + 2m2L1l2 cos(q2)

m12(q2) = I2 +m2l
2
2 +m2L1l2 cos(q2) m21(q2) = m12(q2)

m22(q2) = I2 +m2l
2
2

c1(q, q̇) = −m2L1l2 sin(q2)(2q̇1q̇2 + q22)

c2(q, q̇) = m2L1l2 sin(q2)(2q̇1q̇2 + q̇22)

g1(q1, q2) = −(m1l1 +m2L1)g sin(q1)−m2l2g sin(q1 + q2)

g2(q1, q2) = −m2l2g sin(q1 + q2)
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The system can be written as:

ẋ1 = x2

ẋ2 = f1 + b1(x)u

ẋ3 = x4

ẋ4 = f1 + b2(x)u

(4.12)

where

f1(x) = −m̄−1
11 (c̄1 + g1)

b1(x) = m̄−1
11

f2(x) = −m̄−
22)(c̄2 + ḡ2)

b2(x) = m̄−1
22

We chose the physical parameters of the Acrobot, adopted from [35], as:

m1 = 1(kg), m2 = 1(kg), L1 = 1(m), L2 = 2(m), l1 = 0.5(m), l2 = 1(m),

I1 = 0.0833(kg.m2), I2 = 0.33(kg.m2), and g = 9.8(m.sec−2)).

The control task, is to swing the Acrobot from the downward stable equilibrium

state (q1 = π
2
, q2 = 0) to the upright unstable equilibrium state (q1 = 0, q2 = 0).

fig. 4.13 shows the simulation results for the Acrobot with the proposed control

algorithm.
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(a)

(b)

(c)

Figure 4.13: Closed loop response of the Acrobot ,(a) Time response of sys-
tem’s states corresponding to initial condition (x1(0), ..., x4(0)) = (1, 0, π4 , 0),
(b) Time response of u2, û2 and control effort u = u1, (c)Time history of the

sliding surfaces s1 and s2
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The Pendubot :

The Pendubot is also a two link manipulator with a single actuator at the base

as shown in fig 4.12(b) . For the dynamical model of the Pendubot, F (q) =

[F1(q), F2(q)]
T = [1, 0]T in (3.4) and the equations of motion are given by (3.6) as:

m11q̈1 +m12q̈2 + c1 + g1 = u

m21q̈1 +m22q̈2 + c2 + g2 = 0
(4.13)

with m11, m12, m21, m22, c1, g1, c2, g2, f1, f2, b1 and b2 the same as for the

Acrobot, given by (4.11). We chose the physical parameters of the Pendubot,

adopted from [35], as:

The control task, is to swing the Acrobot from the downward stable equilibrium

state (q1 = π
2
, q2 = 0) to the upright unstable equilibrium state (q1 = 0, q2 = 0).

fig. 4.14 shows the simulation results for the pendubot with the proposed control

algorithm.

4.4.1 Results and Discussion

Simulation results in fig 4.12 and fig 4.13 show the performance of the proposed

control algorithm. The settling time is less than 10 seconds in both the cases. The

response of the state trajectories is smooth and less oscillatory as compared to

other methods, for example in [11]. The control effort is also smooth and within

reasonable limits. All these achievements show the effectiveness of the proposed

control algorithm.
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(a)

(b)

(c)

Figure 4.14: Closed loop response of the Pendubot ,(a) Time response of sys-
tem’s states corresponding to initial condition (x1(0), ..., x4(0)) = (−2,−1, π, 2),
(b) Time response of u2, û2 and control effort u = u1, (c)Time history of the

sliding surfaces s1 and s2
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4.5 The Double Inverted Pendulum System

The double inverted pendulum system is made up of two links pendulum on a

moving cart as is shown in fig 4.15. In this system there are three subsystems.

First subsystem is pendulum 1 , second subsytem is pendulum 2, and the third

subsystem is cart. The control task is to move the cart on a rail origin by balancing

both of the pendulum upright. [16].

Figure 4.15: Double Inverted Pendulum System

With respect to the vertical line, θ1 and θ2 be the angle of pendulum 1 and pen-

dulum 2. Whereas, for origin z be the cart position. u be the control force. Let

mi, i = 1, 2, 3 be the masses of the cart, the pendulum 1 and the pendulum 2.

Let Li i = 2, 3 be the respective length of the lower and upper pendulums and

li, i = 2, 3 be the lengths from their center of masses respectively. Let Ii, i = 2, 3
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be the respective inertia of the pendulums.

By defining the coordinates of the center of masses as: z1 =

z
0

, z2 =

z + l2 sin θ1

l2 cos θ1


z3 =

z + L2 sin θ1 + l3 sin(θ1 + θ2)

L2 cos θ1l3 cos(θ1 + θ2)

 and θ = [z θ1 θ2]
T , then the total kinetic

energy is:

K = 1
2
θ̇T θ̇, where ,M is the 3× 3 symmetric matrix and its elements are given as:

m11 = m1 +m2 +m3,

m22(θ2) = I2 + I3 +m2l
2
2 +m3L

2
2 +m3l

2
3 + 2m3L2l3 cos θ2

m33 = I3 +m3l
2
3// m12(θ1, θ2) = m21 = (m2l2 +m3L2) cos θ1 +m3l3 cos(θ1 + θ2)

m13(θ1, θ2) = m31 = m3l3 cos(θ1 + θ2)

m23(θ2) = m32 = (m3l
2
3 +m3l3L2) cos θ2 + I3

Therefore

K = 1
2
m11ż

2+ 1
2
m22(θ2)θ̇1

2
+ 1

2
m33θ̇2

2
+m12(θ1, θ2)ẋθ̇1+m13(θ1, θ2)ẋθ̇2+m23(θ2)θ̇1θ̇2

The total potential energy is:

V = (m2l2 +m3L2)g cos θ1 +m3l3g cos(θ1 + θ2)

Then the Lagrangian is:

L = K−V = K = 1
2
m11ż

2+1
2
m22(θ2)θ̇1

2
+1

2
m33θ̇2

2
+m12(θ1, θ2)ẋθ̇1+m13(θ1, θ2)ẋθ̇2+

m23(θ2)θ̇1θ̇2 − (m2l2 +m3L2)g cos θ1 +m3l3g cos(θ1 + θ2)

Then Euler-Lagrange equation of motion : d
dt
∂L
∂θ̇
− ∂L

∂θ
= F gives that:

m11z̈ +m12θ̈1 +m13θ̈2 = u (4.14)

m12z̈ +m22θ̈1 +m23θ̈2 + {k sin θ1 +m3l3 sin(θ1 + θ2)}żθ̇1

+ {m3l3 sin(θ1 + θ2)}żθ̇2 + kg sin θ1 +m3l3g sin(θ1 + θ2) = 0

where k = (m2l2 +m3L2) (4.15)
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m13z̈ +m23θ̈1 +m33θ̈2 + {2m3l3L2 sin θ2}θ̇21 + {m3l3 sin(θ1 + θ2)}żθ̇1

+ {m3l3 sin(θ1 + θ2)}żθ̇2 + {m3l3 sin(θ1 + θ2)}θ̇1θ̇2 +m3l3g sin(θ1 + θ2) = 0

(4.16)

Equation (4.14)-(4.16) can be expressed as:

m11z̈ +m12θ̈1 +m13θ̈2 = u

m12z̈ +m22θ̈1 +m23θ̈2 + c2 + g2 = 0

m13z̈ +m23θ̈1 +m33θ̈2 + c2 + g2 = 0

(4.17)

Where

c2 = {k sin θ1 +m3l3 sin(θ1 + θ2)}żθ̇1 + {m3l3 sin(θ1 + θ2)}żθ̇2
g2 = kg sin θ1 +m3l3g sin(θ1 + θ2, where, k = (m2l2 +m3L2)

c3 = {2m3l3L2 sin θ2}θ̇21 + {m3l3 sin(θ1 + θ2)}żθ̇1 + {m3l3 sin(θ1 + θ2)}żθ̇2
+ {m3l3 sin(θ1 + θ2)}θ̇1θ̇2
g3 = m3l3g sin(θ1 + θ2)

Solving the equation (4.17) we have

z̈ = −m12

m11

θ̈1 −
m13

m11

θ̈2 +
1

m11

u

m̄11θ̈1 + m̄12θ̈2 = −m12

m11

u− c2 − g2

m̄12θ̈1 + m̄22θ̈2 = −m13

m11

u− c3 − g3

(4.18)

where m̄11 = (m22 − m12
2

m11
), m̄12 = (m23 − m12m13

m11
) and m̄22 = (m33 − m13

2

m11
)

Equation (4.18) can be written further as:

z̈ = −m12

m11

θ̈1 −
m13

m11

θ̈2 +
1

m11

u

¯̄m11θ̈1 = u(
m12m̄22 − m̄12m13

m11

) + c̄2 + ḡ2 − c̄3 − ḡ3

¯̄m11θ̈2 = u(
m̄11m13 − m̄12m12

m11

)− ¯̄c2 − ¯̄g2 + ¯̄c3 + ¯̄g3

(4.19)

where

c̄2 = m̄22c2, ḡ2 = m̄22g2, c̄3 = m̄12c3 and ḡ3 = m̄12g3

¯̄c2 = m̄11c2, ¯̄g2 = m̄12g2, ¯̄c3 = m̄11c3, ¯̄c3 = m̄11c3, ¯̄g3 = m̄11g3 and ¯̄m11 = m̄2
12 −
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m̄22m̄11

From (4.19) we have the following expressions:

z̈ =
m12

m11 ¯̄m11

{−c̄2 − ḡ2 + c̄3 + ḡ3}+
m13

m11 ¯̄m11

{¯̄c2 + ¯̄g2 − ¯̄c3 − ¯̄g3}

+
1

m11

{1 +m12m̄22 − m̄12m13 + m̄11m13 − m̄12m12}u

θ̈1 =
1

¯̄m11

{c̄2 + ḡ2 − c̄3 − ḡ3}+ u(
m12m̄22 − m̄12m13

m11 ¯̄m11

)

θ̈2 =
1

¯̄m11

{−¯̄c2 − ¯̄g2 + ¯̄c3 + ¯̄g3}+ u(
m̄11m13 − m̄12m12

m11 ¯̄m11

)

(4.20)

Define the state variables as: x1 = z, x2 = ż, x3 = θ, x4 = θ̇1, x5 = θ2 and x6 =

θ̇2 x = [x1 x2 x3 x4 x5 x6]
T . By using the following notations:

f1(x) =
m12

m11 ¯̄m11

{−c̄2 − ḡ2 + c̄3 + ḡ3}+
m13

m11 ¯̄m11

{¯̄c2 + ¯̄g2 − ¯̄c3 − ¯̄g3}

b1(x) =
1

m11

{1 +m12m̄22 − m̄12m13 + m̄11m13 − m̄12m12}

f2(x) =
1

¯̄m11

{c̄2 + ḡ2 − c̄3 − ḡ3}

b2(x) = (
m12m̄22 − m̄12m13

m11 ¯̄m11

)

f3(x) =
1

¯̄m11

{−¯̄c2 − ¯̄g2 + ¯̄c3 + ¯̄g3}

b3(x) = (
m̄11m13 − m̄12m12

m11 ¯̄m11

)

(4.21)

The state space representation of the equation is:

ẋ1 = x2

ẋ2 = f1 + b1(x)u

ẋ3 = x4

ẋ4 = f2 + b2(x)u

ẋ5 = x6

ẋ6 = f3 + b3(x)u

(4.22)
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4.5.1 Results and Discussion

The physical parameters of the Double Inverted Pendulum as:

m1 = m2 = m3 = 1, l2 = l3 = 0.75, I2 = 4
3
m2l

2
2, I3 = 4

3
m3l

2
3, g = 9.8

The initial and the desired is chosen as in [16]. fig 4.16 and 4.17 show the simulation

result of double inverted pendulum system. Both the pendulum and cart move to

its equilibrium point when the force acts only on the cart. The simulation is done

for different initial condition.
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(a)

(b)

Figure 4.16: Closed loop response of the Double Inverted Pendulum Sys-
tem ,(a) Time response of system’s states corresponding to initial condition
(x1(0), ..., x6(0)) = (0, 15,−15, 0, 0, 0), (b) Time response of u2, û2 and control

effort u = u1,
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(a)

(b)

Figure 4.17: Closed loop response of the Double Inverted Pendulum Sys-
tem ,(a) Time response of system’s states corresponding to initial condition
(x1(0), ..., x6(0)) = (π6 , 0,

π
18 , 0, 0, 0), (b) Time response of u2, û2 and control

effort u = u1,
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4.6 Summary

In this chapter, the proposed algorithm is applied on different UMSs. The algo-

rithm is applied on five UMSs having 2DOF and one UMS having 3DOF. Every

system has different control task. The control task is achieved which show the

effectiveness of the proposed algorithm.



Chapter 5

Conclusion and Future work

5.1 Conclusion

In the past few decades there has been an increasing interest in the underactuated

mechanical systems. These systems have many practical and diverse applications

in modern science and engineering. The broad application areas of underactuated

systems include robotics, industry, and aerospace systems. This thesis presented

a simple stabilizing control algorithm for a class of UMS with n degrees of free-

dom (n DOF). The methodology is based on an adaptive sliding mode control. A

system is transformed to a special structure through input transformation, con-

taining nominal part plus some unknown term. The unknown term is computed

adaptively. Later the transformed system is stabilized using the designed adaptive

sliding mode control. The adapted laws were derived in such a way that the time

derivative of a Lyapunov function becomes strictly negative. The effectiveness of

the proposed method is applied to different underactuated systems having 2 DOF

and 3DOF: Inverted pendulum, TORA system, The Pendubot and Acrobot, Ball

and Beam system and double inverted pendulum. Computer simulation results

show the validity of the proposed control scheme on these systems which confirmed

the sliding mode enforcement in finite time along with asymptotic convergence of

system’s states.

50
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5.2 Future Work

The productive completion of this thesis, some suggestion is created that should

be examine in the future. The work carried out in this thesis can be extended in

future. To other UMS the proposed technique is applicable. There are some areas

which need future attention. The future work is to implement on the practical

UMS. After implementing compare the result with the the proposed technique.
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